Unitary Units of the Group Algebra F2kQ8
نویسندگان
چکیده
g∈G agg −1 is an antiautomorphism of KG of order 2. An element v of V (KG) satisfying v = v is called unitary. We denote by V∗(KG) the subgroup of V (KG) formed by the unitary elements of KG. Let char(K) be the characteristic of the field K. In [2], A.Bovdi and A. Szákacs construct a basis for V∗(KG) where char(K) > 2. Also A. Bovdi and L. Erdei [1] determine the structure of V∗(F2G) for all groups of order 8 and 16 where F2 is the Galois field of 2 elements . Additionally in [3], V. Bovdi and A.L. Rosa determine the order of V∗(F2kG) for special cases of G. We establish
منابع مشابه
A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملComputing Wiener and hyper–Wiener indices of unitary Cayley graphs
The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.
متن کاملOn the Order of the Unitary Subgroup of Modular Group Algebra
Let KG be a group algebra of a finite p -group G over a finite field K of characteristic p . We compute the order of the unitary subgroup of the group of units when G is either an extraspecial 2-group or the central product of such a group with a cyclic group of order 4 or G has an abelian subgroup A of index 2 and an element b such that b inverts each element of A .
متن کاملOD-characterization of $U_3(9)$ and its group of automorphisms
Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. Since $Aut(L)equiv Z_4$ hence almost simple groups related to $L$ are $L$, $L : 2$ or $L : 4$. In fact, we prove that $L$, $L : 2$ and $L : 4$ are OD-characterizable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 19 شماره
صفحات -
تاریخ انتشار 2009