Unitary Units of the Group Algebra F2kQ8

نویسندگان

  • Leo Creedon
  • Joe Gildea
چکیده

g∈G agg −1 is an antiautomorphism of KG of order 2. An element v of V (KG) satisfying v = v is called unitary. We denote by V∗(KG) the subgroup of V (KG) formed by the unitary elements of KG. Let char(K) be the characteristic of the field K. In [2], A.Bovdi and A. Szákacs construct a basis for V∗(KG) where char(K) > 2. Also A. Bovdi and L. Erdei [1] determine the structure of V∗(F2G) for all groups of order 8 and 16 where F2 is the Galois field of 2 elements . Additionally in [3], V. Bovdi and A.L. Rosa determine the order of V∗(F2kG) for special cases of G. We establish

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

Computing Wiener and hyper–Wiener indices of unitary Cayley graphs

The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.

متن کامل

On the Order of the Unitary Subgroup of Modular Group Algebra

Let KG be a group algebra of a finite p -group G over a finite field K of characteristic p . We compute the order of the unitary subgroup of the group of units when G is either an extraspecial 2-group or the central product of such a group with a cyclic group of order 4 or G has an abelian subgroup A of index 2 and an element b such that b inverts each element of A .

متن کامل

OD-characterization of $U_3(9)$ and its group of automorphisms

Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field  with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. Since $Aut(L)equiv Z_4$ hence almost simple groups related to $L$ are $L$, $L : 2$ or $L : 4$. In fact, we prove that $L$, $L : 2$ and $L : 4$ are OD-characterizable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009